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ABSTRACT

As DNNs gain popularity inmodern datacenters, it becomes imper-

ative to revisit compiler optimizations for DNNs in a co-location

scenario. Loop tiling turns out to be the most signi�cant compiler

optimization, since DNNs typically apply a series of matrix com-

putations iteratively to a massive amount of data.

We introduce a reuse-pattern-centric approach to obtaining a

peer-aware TSS (Tile Size Selection) model for a matrix-based ap-

plication A. Our key insight is that the co-running cache behav-

ior of A (once tiled) can be determined by its data reuse patterns,

together with the cache pressure exerted by its co-running peers,

without actually the need for analyzing the code of its co-runners.

Compared with static tiling (that determines a tile size for A stat-

ically without considering its co-running peers), our peer-aware

tiling enables compilers to generate either faster peer-aware e�-

cient code for A (by optimizing the performance of A) or faster

peer-aware nice code for A (by optimizing the performance of its

co-runners). In addition, our peer-aware tiling also enables library

developers to improve the performance of library routines (more

e�ectively than static tiling).

CCS CONCEPTS

• Software and its engineering→ Compilers;
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1 INTRODUCTION

Deep neural networks (DNNs) have gained popularity in a vari-

ety of applications such as speech recognition, computer vision,

and bioinformatics, prompting their deployment across datacen-

ters [20]. A datacenter has two categories of applications [13, 26,

42], user-facing latency-sensitive applications, e.g., web search, with

strict QoS needs, and batch applications, e.g., those for training

DNNs, with medium QoS needs. A datacenter usually selects some

batch applications to co-locate with latency-sensitive applications

on CMP servers, thereby increasing hardware resource utilization.

However, this is done only when the strict QoS requirements of

latency-sensitive applications are guaranteed [42].

Therefore, it becomes imperative to revisit compiler optimiza-

tions for DNNs in a co-location scenario. In general, DNN-based

applications, especially in convolutional layers and fully connected

layers, are compute-intensive, as they typically apply a series of

matrix computations iteratively to a massive amount of data. For

this reason, loop tiling turns out to be themost signi�cant compiler

optimization. In this paper, we introduce peer-aware loop tiling

that enables tiling a DNN-based application by optimizing the per-

formance of either itself or its co-running peers. This allows the

QoS needs of two types of applications to be met judiciously.

The key challenge faced lies in TSS (Tile Size Selection), which

aims to keep the frequently used data in a program at a given level

of cache targeted. A great deal of research has been done on TSS

for solo executions [3–5, 9, 31, 32, 44, 48, 54], by assuming that the

program runs on an unloaded machine, without being aware of its

co-runners.
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For a co-located application A, loop tiling that is applied in a

traditional compiler is ine�ective for two reasons. First, A can

no longer enjoy exclusively all the underlying hardware resources.

Worse still, the compiler does not even know the amount of shared

resources, e.g., the portion of the shared cache available when A

starts executing. Second, loop tiling is now applied to achieve a

di�erent goal. We will need to tile A by making it run not only

e�ciently but also nicely [41]. To make A e�cient by itself, the

compiler would like to keep the data that are frequently used by

A in the shared cache as in the solo execution of A. To make A

nice to its co-runners, the compiler should ensure thatA does not

snatch the shared resources (e.g., the portion of the shared cache)

that are supposed to be used by its co-running peers so as to violate

their QoS requirements.

Tang et al. [41] discuss how to compile for niceness, by insert-

ing nop instructions to throttle down the memory access rates

of batch applications. Srinivas et al. [37] introduce reactive loop

tiling, which generates multiple tiled code versions with di�erent

tile sizes for a given loop nest and dynamically selects the best ver-

sion at runtime. However, reactive tiling makes two assumptions.

First, a TSSmodel is assumed to be available so that tile sizes can be

selected. Second, the OS/hardware supports cache partitioning so

that di�erent applications run in disjoint parts of the shared cache.

In this paper, we focus on developing a TSS model that is well

suited to a co-location scenario for modern datacenters without re-

quiring any special OS/hardware support. This brings two bene�ts.

First, it is di�cult to pre-determine a cache partitioning scheme be-

tween co-running applications, due to a combinational explosion

of application co-locations, which is caused by the sheer number of

workloads to be considered on a large number of processor cores.

Second, it is also di�cult to make cache reservation for latency-

sensitive applications, due to their workload �uctuations, since

they may need to run on more cores at peak times but less oth-

erwise.

For a matrix-based application A, our key insight is that the

co-running cache behavior of its tiled version, TA , can be deter-

mined by analyzing its data reuse patterns alone without actually

the need for analyzing the code of its co-running peers. Speci�-

cally, the co-running cache behavior of TA is simply an aggrega-

tion of the co-running cache behaviors of its individual data reuse

patterns. This insight makes it possible to develop a peer-aware

TSSmodelM (TA ) forTA analytically, by characterizing its shared

cache (LLC) miss count as a function of the cache pressure exerted

to TA by its co-running peers. In particular,M (TA ) is built e�-

ciently o�ine by using a small amount of pro�ling data.

We have developed a peer-aware loop tiling approach that in-

serts instrumentation code just before TA to monitor the cache

pressure exerted by its co-running peers and then selects an ap-

propriate tile size based onM (TA ) to enable TA to run afterwards.

Currently, we allow a tile size to be selected by optimizing one of

the two optimization objectives. To maximize the performance of

TA , we will select a tile size that minimizes the shared cache miss

count for TA in order to keep its frequently used data in the shared

cache. To maximize the performance of TA ’s co-running peers (at

its own expense), wewill select a tile size thatminimizes the shared

cache miss frequency of TA in order to minimize the shared cache

interference to the co-running peers.

Peer-aware loop tiling can be easily deployed in modern data-

centers for DNN-based applications. Just before each matrix com-

putation starts, its tile size can be selected according to a user-

annotated optimization objective and the cache pressure detected

in real time. This paper makes the following contributions:

• We introduce a reuse-pattern-centric approach for modeling

the co-running cache behavior of a tiled matrix-based applica-

tion as an aggregation of the co-running cache behaviors of its

data reuse patterns.

• We introduce an approach for building analytically a peer-aware

TSS model for a tiled application, without the need for analyz-

ing its co-running peers. For a given tile size, the model predicts

the application’s shared cache miss count as a function of the

cache pressure exerted by the co-running peers.

• For a tiledmatrix-based application, we observe that its optimal

tile size is a non-monotone function of the cache pressure ex-

erted by the co-running peers due to the combined e�ect of the

application’s multiple data reuse patterns. Our model explains

the reasons behind this non-intuitive observation.

• We introduce a peer-aware tiling approach that enables compil-

ing a matrix-based application for e�ciency or niceness in a co-

location scenario. For the three representative benchmarks eval-

uated in a co-location scenario, our approach can predict their

LLC miss counts with high accuracy on real machines (with

an average error of 5.0% only). We have compared peer-aware

tiling with static tiling on two Xeonmachines (Westmere-based

and Sandy Bridge-based). For theWestere-based machine, peer-

aware tiling can reduce their co-locationperformance slowdowns

by 34.1%, 40.3% and 36.9%, on average, respectively. For a latency-

sensitive co-running application, memcached [17], peer-aware

tiling decreases its performance slowdown by 31.1% for the 95th

percentile latency. For the Sandy Bridge-based machine, peer-

aware is similarly more e�ective than static tiling.

• Our TSSmodel can also be applied to the development of library

routines for matrix-based computations. By applying it to AT-

LAS, we achieve a performance increase of 8.9% in a co-location

scenario.

The rest of the paper is organized as follows. Section 2motivates

this work. Section 3 presents our analytical model for peer-aware

TSS. Section 4 describes our loop-tiling framework. Section 5 eval-

uates this work and analyzes our experimental results. Section 6

discusses the related work. Finally, Section 7 concludes.

2 MOTIVATION

Our motivating example is GEMM, a well-known kernel of GEn-

eralMatrixMultiplication.We present some results to demonstrate

the limitations of static tiling. The experimental platform used is

an Intel 2.40GHz six-core processor, with the details given in Sec-

tion 6.

Figure 1 gives the GEMM code with two-level tiling. The inner-

level tiling (with IB as tile size) is for private caches while the

outer-level (with OB as tile size) is for the shared cache. In our

experiments, IB is �xed as 56 and how to select OB is the focus of

this paper, which is set as 840 for solo executions by hand-tuning.

For simplicity, we focus on square tiles in both cases.
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//Tiled code.

void gemm(int N)

{ int i, j, k, ii, jj, kk, iii, jjj, kkk;

int OB, IB;

//Tiling for shared cache.

for (iii=0; iii<N; iii+=OB)

for (jjj=0; jjj<N; jjj+=OB)

for(kkk=0; kkk<N; kkk+=OB)

for (ii=iii; ii<min(iii+OB,N); ii+=IB)

for (jj=jjj; jj<min(jjj+OB, N); jj+=IB)

for (kk=kkk; kk<min(kkk+OB,N); kk+=IB)

//Tiling for private cache.

for (i=ii; i<min(ii+IB, N); i++)

for (j=jj; j<min(jj+IB, N); j++)

for (k=kk; k<min(kk+IB, N); k++)

C[i][j]+=A[i][k]*B[k][j];

}

Figure 1: The GEMM kernel code after two-level tiling.

Figure 2: Performance of GEMM when co-running with 10

workloads (with 0 for its solo-run).

2.1 Behaviors of Tiled Code When Co-located

Wehavemanually generated 10 distinct STREAMkernels [30]. Each

kernel has a working set of 200MB but with di�erent data-fetching

speeds, so that the 10 kernels exhibit di�erent cache pressures to

GEMM.

Figure 2 shows the performance variations of GEMM when ex-

ecuted alone and co-running with the 10 workloads, with the hor-

izontal axis representing the workloads (with 0 for solo-run) and

the vertical axes representing GEMM’s execution times (against

the left one) and GEMM’s LLC miss counts (against the right one).

There is a good correlation between the execution times and their

corresponding LLC miss counts.

2.2 Limitations of Static Tiling

We discuss the limitations of static tiling for GEMM by continu-

ing to use the same 10 co-running workloads. We select three tile

sizes for GEMM, where OB ∈ {448,616, 840}, and examine their

performance variations in solo-run and when co-running with the

10 workloads. Figure 3 shows the results, with the horizontal axis

representing the workloads and the vertical axis representing the

LLC cache miss counts of GEMM. All the LLC cache miss counts

are normalized to the tile size of 840.

Figure 3 uses red triangles to highlight the optimal tile sizes for

all the workloads. For solo execution, the optimal tile size is stati-

cally �xed as 840. However, as shown in Figure 3, 840 is not always

optimal in a co-location scenario. In particular, it is optimal only

Figure 3: The LLCmiss counts of GEMMwith three tile sizes

when co-running with the 10 workloads.

Figure 4: Performance of memcached when co-located with

GEMM (tiled with OB ∈ {448, 840}).

for workloads #4 and #5. The tile size 616 is optimal for workloads

#1, #6 and #7. Finally, 448 is the optimal tile size for workloads #2,

#3, and #8 – #10.

2.3 Behaviors of Co-runners

To demonstrate the interference of GEMM to a co-located latency-

sensitive application, we co-run memcached with GEMM twice,

once tiled with size OB = 448 and once tiled with size OB =

840. Note thatmemcached is a distributed memory caching system,

which provides an in-memory key-value store for small chunks

of arbitrary data and speeds up dynamic database-driven websites

[17], as discussed in Section 5.

Figure 4 shows the 95th percentile latency of memcached for

100 repeated runs, with the horizontal axis representing the ID

of a run and the y-axis representing the 95th percentile latency.

The runs are not stable initially but become stablized later. When

memcached runs alone, the average 95th percentile latency for the

100 runs is 225µs. When co-running with GEMM (tiled with 448),

the average 95th percentile latency increases to 256µs. When co-

running with GEMM (tiled with 840), the average 95th percentile

latency increases to 265µs. As demonstrated in [13], low tail la-

tency is signi�cantly important in datacenters.

2.4 Summary

In a co-location scenario, static tiling does not usually provide the

optimal tile size for a tiled application. In addition, there does not
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Figure 5: Reuse patterns of the tiled GEMM in Figure 1, illus-

trated for the case when N = 2 ∗OB = 4 ∗ IB.

exist a �xed tile size that can always provide optimal performance.

Finally, di�erent tile sizes lead to di�erent amounts of interference

to the co-runners of the tiled application.

3 PEER-AWARE TILE SIZE SELECTION

This section presents our peer-aware TSS approach. We �rst dis-

cuss how to quantify the co-running cache behavior of a tiledmatrix-

based application in a reuse-pattern-centric manner (Section 3.1).

We then develop a peer-aware TSS model (Section 3.2). Finally, we

use GEMM to verify its accuracy (Section 3.3).

For simplicity, we ignore inclusion victims, i.e., we assume that

the number of requests issued to the shared (LLC) cache remains

unchanged in solo and co-located scenarios. In Section 3.3, we will

see that this assumption does not a�ect the accuracy of our model.

3.1 Reuse-Pattern-Centric Analysis

Most matrix computations contain more than one reuse pattern.

We take the tiled GEMM code given in Figure 1 as an example.

Figure 5 shows how its data are reused in the shared cache. Each

small square corresponds to a tile in the private cache. We are not

concerned with the data reuse inside the private caches. The tiled

GEMM code contains three reuse patterns, denoted as RA, RB , RC ,

with each pattern identi�ed by a (data) reuse block highlighted in

yellow. For each matrix X ∈ {A,B,C },n(RX ) represents the (reuse)

size of a reuse block forX , rd (RX ) the reuse distance of an element

in the reuse block, and rc (RX ) the number of times that such an

element is reused.

Let us see how the reuse distance of RA is computed. Between

two successive accesses of an element for RA, the data fetched into

the shared cache comprise one reuse block RA of size IB ∗OB, one

column of size OB ∗ IB from one reuse block of RB , and one small

tile of size IB∗IB from one reuse blockRC . Thus, the reuse distance

for (an element in) RA is found as:

rd (RA) = 2 ∗OB ∗ IB + IB ∗ IB

The reuse distances for RB and RC are found similarly.

Nowwe analyze what happenswhen another applicationL is co-

locatedwith the tiled GEMMcode. If L fetches data at a �xed speed

that �lls the shared cache before RC is reused, then RC will be

evicted from cache due to its largest reuse distance and the LRU re-

placement policy used. If L has a �xed data-fetching speed through-

out, we can expect that for each element c in RC , its reuse distance

ends up being increased by the same amount, i.e., a �xed number

of L’s data elements fetched into the cache between two successive

accesses of c . Therefore, there exists a certain cache pressure that

turns all cache hits of RC into cache misses.

As shown in Figure 5, RC has n(RC ) data elements with each el-

ement accessed rc (RC ) times. Therefore, the additional cache miss

count caused to RC (due to the shared cache interference from L)

is:

∆(RC ) = n(RC ) ∗ rc (RC ) =
N

3

OB

Similarly, if L fetches data at a higher speed that �lls the shared

cache before RB is reused, not only RC but also RB will be evicted

from cache, making all the accesses to RB and RC cache misses.

The same applies to RA.

Observation 3.1. Consider a shared cache that uses LRU as its

replacement policy. Let an applicationL be co-locatedwith a tiledma-

trix application, which consists ofm reuse patterns R1, · · · ,Rm . As

L increases its data-fetching speed, their reuse blocks will be evicted

from the shared cache in decreasing order of their reuse distances.

Furthermore, if a reuse block for Ri is being evicted from the shared

cache, then a reuse block for Rj that has a larger reuse distance, where

rd (Rj ) > rd (Ri ), has already been evicted from the shared cache.

3.2 Creating a Peer-Aware TSS Model

Observation 1 leads to the development of a peer-aware TSSmodel.

For a matrix-based application A, we continue to denote its tiled

version by TA .

We �rst discuss how to characterize the data reuse patterns for

TA (Section 3.2.1). We then model the co-running cache behav-

iors of its reuse patterns individually (Section 3.2.2). Finally, we

obtain a peer-aware TSS model by aggregating all such individual

co-running cache behaviors obtained (Section 3.2.3).

It is important to emphasize that our model is parameterized

(often implicitly) by the tile size of TA . The key novelty here is

that our model is developed to enable the performance of either

TA or its co-runners to be optimized, without having to analyze

the code of the co-runners. Based on the cache pressure exerted to

TA by its co-runners just before its execution, the optimal tile size

for TA is determined from a set of candidate tile sizes, depending

on whether we optimize TA (for e�ciency) or its co-runners (for

niceness).

3.2.1 Characterizing Data Reuse Pa�erns. A reuse pattern Ri is

identi�ed by:

n(Ri ): The size of a reuse block for Ri ,

rd (Ri ): The reuse distance of an element in Ri , and

rc (Ri ): The number of times that Ri is reused.

For the tiled GEMM code given in Figure 1, Figure 5 lists the three

reuse patterns, RA, RB and RC .

For convenience, given a reuse pattern Ri , we de�ne:

nord (Ri ) = rd (Ri ) − n(Ri ) (1)

which represents the number of distinct elements outside Ri that

are accessed between two successive accesses of an element in Ri .
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Table 1: Parameters used for modeling a reuse pattern.

Category Notation
Tile

Size
Remarks

How

Obtained

TA

(Solo-Run)

hitsolo t i
cache hit count for

t i in solo-run

o�ine
misssolo t i

cache miss count

for t i in solo-run

tsolo t i
execution time for

t i in solo-run

R

(Reuse Pattern)

rd (R ) t i
reuse distance of R

for t i

compilern(R ) t i size of of R for t i

r c (R ) t i
reuse count of R

for t i

F

(Cache Flusher)

p -

L2LinesInRate of

F , i.e., its cache

pressure

online

(Platform)

cmem -
memory access

latency

constant
cl lc - LLC access latency

C - LLC cache size

#ways - LLC cache ways

Within rd (Ri ), two type of data are accessed: those in Ri and those

outside Ri .

By de�nition, nord (Ri ) gives the worst case cache miss count

at the critical state just before Ri is evicted from the shared cache.

This is the point at which Ri is still used but all elements outside

Ri are not.

3.2.2 Modeling an Individual Reuse Pa�ern. Whenmodeling the

shared cachemisses for an individual reuse patternR ofTA , we use

a cache �usher F as its co-runner. We �rst assume that the shared

cache is fully-associative with an LRU replacement policy and then

adjust our model for a real machine.

Model Parameters. Table 1 lists a total of 12 parameters used.

The top seven depend on a tile size ti given but are not quali�ed

by ti to avoid cluttering. These parameters can be divided into the

following four categories:

• BehaviorofTA in solo-run.There are three parameters, record-

ing TA ’s cache hit count, cache miss count, and execution time in

solo-run. We use o�ine pro�ling to collect these data for a given

tile size ti .

• Reuse pattern R. There are three parameters for characterizing

R (Section 3.2.1), which are calculated for a tile size ti parametri-

cally by compiler analysis.

• F ’s cache pressure.There is just one parameter, the L2LinesInRate

of F , used for representing F ’s cache pressure exerted to TA . This

can be obtained by using lightweight online pro�ling with little

overhead.

• Hardware parameters.There are four platform-speci�c param-

eters used: the average memory access latency, the LLC access la-

tency, the cache capacity, and cache associativity (referred to as

ways).

Modeling Cache Sharing. According to our observation in 3.1,

the additional cachemiss count thatR su�erswhenTA is co-running

with F can be estimated by using a step function:

∆(R) = hit (R) ∗ σ (R, F ,C) (2)

where hit (R) is the number of cache hits corresponding to R’s

accesses in solo-run, which will be modeled below, and σ is the

growth factor of R’s cache miss count:

σ (R, F , C) =

{

1 f p (R) + f p (F ) > C

0 otherwise
(3)

Therefore, when the combined footprint of R and F , i.e., f p (R) +

f p (F ) exceeds the cache capacityC , all the cache hits of R in solo-

run are turned into misses.

Modeling the Footprints f p (R) and f p (F ). To compute a foot-

print,we need toworkwith the physical time.We de�ne the elapsed

time between R’s two successive reuses as tR when TA is in solo-

run. Thus, f p (R) and f p (F ) represent the footprints of R and F

during the time period tR , respectively. By de�nition, f p (R) is sim-

ply its reuse distance and f p (F ) can be estimated as the amount of

data that are fetched at its data-fetching speed p during tR :

f p (R) = rd (R)

f p (F ) = p ∗ tR
(4)

Now we need to estimate tR , the physical time of R’s two suc-

cessive reuses when co-located. For simplicity, we use the physical

time of TA ’s solo-execution.

Let us consider �rst when R is a reuse pattern with the largest

reuse distance in TA , e.g., RC in GEMM. Since tR is a fragment of

TA ’s execution, we assume that the same miss frequency, which

can be computed as misssolo/tsolo , occurs throughout. Thus, we

have:

tR =misstR (R)/miss_f requency

=misstR (R)/(misssolo/tsolo )

=

nord (R )∗tsolo
misssolo

(5)

where misstR (R) is R’s cache miss count between R’s two succes-

sive accesses in solo-execution, which is given by nord (R), and

tsolo and misssolo are the execution time and miss count of TA
listed in Table 1.

Next, we consider the case when R is a reuse pattern that does

not have the largest reuse distance. According to Observation 1,

if R is being evicted from the shared cache, all data reuse blocks

with larger reuse distances have already been evicted from cache,

with all their corresponding cache hits turned into cache misses.

Therefore, tR given in (5) needs to be modi�ed, sincemisssolo and

tsolo used there are no longer accurate.

In this case, TA ’s cache miss count turns out to be:

miss
′
=misssolo +

∑

rd (Rj )>rd (R )

hit (Rj )

and the corresponding execution time of TA becomes:

t
′
= tsolo+ (cmem − cLLC )∗ (

∑

rd (Rj )>rd (R ) hit (Rj )) (6)

As a result, the physical time tR has been re�ned to:

tR =misstR (R )/miss_f r equency

=misstR (R )/(miss ′/t ′)

=

nord (R )∗(tsolo+(cmem−cLLC )(
∑

rd (Rj )>rd (R ) hit (Rj )))

misssolo+
∑

rd (Rj )>rd (R ) hit (Rj )

(7)
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where cmem and cLLC are the average access latencies for memory

and LLC, respectively, given in Table 1.

ModelingHit Counthit (R). Theoretically,we can estimatehit (R)

as n(R)×rc (R), at some loss of accuracy. In this paper, however, we

use the pro�ling data of TA to improve accuracy, by distributing

the cache hits for all the reuse patterns proportionally according

to their reuse counts:

hit (R) =
n(R) ∗ rc (R)

∑

j n(Rj ) ∗ rc (Rj )
∗ hitsolo (8)

Adjusting for Real Machines. Examining (2), we estimate ∆(R) by

using a cache with a capacity C and a growth factor of R’s cache

miss count as a step function in (3). On a real machine, there are

two di�erences. First, the cache is not fully-associative, reducing

the e�ective cache size available. Second, the cache is not com-

pletely LRU, rendering the growth factor not to be a step but con-

tinuous function.

Below, we adjust our model accordingly. First, we adopt the fol-

lowing e�ective cache size, following [36]:

eC =
C

#ways
(
#ways

2
+ 2) (9)

where #ways represents the cache associativity.

Second, we adjust the growth factor into a continuous function.

By (2) – (7), we obtain the following upper bound p
∗
for the pres-

sure exerted to R by F :

p
∗
= max(0, (C − rd (R))/tR ) (10)

To make adjustments on a real machine, we use the e�ective

cache size eC to replace C in (10) to obtain a lower bound p̃∗ for the

pressure exerted to R by F . We leverage a tanh function to connect

(p̃∗, 0) and

(p
∗
,hit (R)) smoothly over the range [p̃∗,p

∗
]:

∆(R) = hit (R) ∗
1

2
(tanh((p −

p̃∗+p
∗

2
) ∗

6

p∗−p̃∗
)+1) (11)

Speci�cally, we obtain this continuous function in three steps. First,

we change the output of tanh from (−1, 1) to (0,hit (R)) by apply-

ing a vertical shift (factor 1) and a vertical stretch (factor
1

2
∗hit (R)).

Second, we transform its symmetric point from (0,hit (R)/2) to

((p̃∗+p
∗
)/2,hit (R)/2) by performing a horizontal shift (factor (p̃∗+

p
∗
)/2). Finally, we perform a horizontal stretch (factor 6/(p

∗ − p̃∗))

in order to obtain 0 when the pressure is p̃∗ and hit (R) when the

pressure is at p
∗
.

Figure 6: Rendering ∆(R) for real machines.
Figure 6 illustrates p

∗
and p̃∗ for the rendered function ∆(R).

In [p̃∗,p
∗
], the dotted blue line shows the ideal cache miss count

for R and the solid blue line shows the estimated behavior by the

rendered function.

Predicting Cache Misses for One Reuse Pattern. We can obtain

our cache miss prediction model for a given reuse pattern R under

a given tile size (not shown explicitly) when TA co-runs with a

cache �usher F :

∆(R) = (12)





0, p < p̃∗

hit (R) ∗ 1

2
(tanh((p −

p̃∗+p∗

2
) ∗ 6

p∗−p̃∗
) + 1), p ∈ [p̃∗,p∗]

hit (R), p > p
∗

where

p
∗
= max(0, (C − rd (R))/tR )

p̃∗ = max(0, (eC − rd (R))/tR )

Here, tR can be estimated by (5) if R is a reuse pattern with the

largest reuse distance and (7) otherwise. In addition, hit (Rj ) can

be estimated by (8).

3.2.3 ObtainingM (TA ) for All Reuse Pa�erns. Based on (12),

we can obtain the additional cache misses introduced by all the

reuse patterns of TA in the presence of a co-located application F

in decreasing order of their reuse distances. Summarizing over all

these reuse patterns, we obtainM (TA ), a peer-aware TSS model,

for estimating the total number of cache misses for TA when TA
co-runs with F :

miss (TA ) =
∑

i

∆(Ri ) +misssolo (TA ) (13)

3.3 Verifying the Peer-Aware TSS Model

We use GEMM tiled with OB = 616 to verify our peer-aware TSS

model, as shown in Figure 7.

Figure 7: Model veri�cation for GEMM (OB = 616).

The solid red line shows the predicted cache miss count, by ap-

plying (12) to RC , RB and RA successively. In particular, the three

dotted boxes highlight the models obtained for the three patterns.

The dotted blue line gives the measured cache miss count when

GEMM co-runs with di�erent workloads, with each workload con-

sisting of up to 5 distinct STREAM kernels.

4 PEER-AWARE TILING FRAMEWORK

Based on our peer-aware TSS model, we can apply peer-aware

tiling to a matrix-based application in the presence of co-located

applications. In datacenters, DNN-based matrix computations it-

eratively apply a series of matrix computations, with each matrix

computation being not extremely large. There are no performance
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bene�ts to dynamically change their tile sizes during program ex-

ecution. Therefore, our peer-aware loop tiling framework deter-

mines the tile size for a loop nest in real time just before it starts

its execution.

Figure 8: A peer-aware loop tiling framework.

Figure 8 depicts the framework. The static component applies

parametric tiling and inserts instrumentation code for a tiled appli-

cation, enabling the dynamic component to detect the cache pres-

sure exerted to the application by its co-runners and determine

the optimal tile size at runtime based our peer-aware TSS model.

In particular, we use PrimeTile [18] to tile loops with parametric

tile sizes (rather than compile-time constants).

The following source-code annotation is provided:

/*@peer-aware(efficiency/niceness)*/

Users can annotate a loop nest that need to be tiled in a peer-

aware manner, with the parameter specifying an objective to be

optimized. Our framework inserts instrumentation code for each

annotated loop nest to serve two purposes at runtime: obtaining

the co-runners’ cache pressure from the runtime detector and de-

termining the optimal tile size according to the peer-aware TSS

model. Figure 9 is the source code after parametric tiling and in-

strumentation for GEMM.

The cache pressure detector is implemented as a helper pro-

cess to communicate with a tiled application via a socket. In par-

ticular, the detector serves as the socket server, waiting for mes-

sages from the application. We leverage the pro�ling technology

commonly deployed in modern datacenters [34], which continu-

ously pro�les the whole system and applies performance analy-

sis, with negligible overhead. Our detector periodically reads the

performance counter L2LinesIn for each co-runner and computes

void gemm(int N)

{ int i, j, k;

p = get_instant_cache_pressure();

OB = get_required_ts(p, model, objective);

for (iii=0; iii<N; iii+=OB)

for (jjj=0; jjj<N; jjj+=OB)

for(kkk=0; kkk<N; kkk+=OB)

...

}

Figure 9: Tiled GEMMwith instrumentation.

the L2LinesInRate for a preset interval, i.e., 1 second. When a re-

quest get_instant_cache_pressure() is received, the most re-

cent L2LinesInRate is returned as the real-time cache pressure.

The function invocation of get_required_ts() is inserted to

select the optimal tile size for a loop nest TA , according to its user

annotation. There are two cases. LetTS be the set of candidate tile

sizes. If TA is annotated as /*@peer-aware(efficiency)*/, we

optimize the performance of TA by selecting the tile size in TS

that minimizes its total cache miss countmiss (TA ) in (13). If TA is

annotated as /*@peer-aware(niceness)*/, we optimize the per-

formance of TA ’s co-runners by selecting the tile size in TS that

minimizes

miss_f eq(TA ) =miss (TA )/testd_time (14)

where testd_time = tsolo + (Cmem − CLLC ) ∗miss (TA ) derived

based on (6). Intuitively, this leads to the niceness of TA towards

its co-runners as the overall memory bandwidth tends to be mini-

mized [41].

5 EVALUATION

The objective is to show that peer-aware tiling is more e�ective

than static tiling in guiding (1) compilers to optimize the perfor-

mance of a tiled matrix-based application or its co-runners and (2)

library developers to optimize the performance of library routines.

Platforms.The main platform used is a two-socket server, with

each socket containing a Westmere-based Intel 2.40GHz six-core

Xeon E5645 with a private 32KB L1 D-cache, a private 32KB L1 I-

cache, a private 256KB L2 cache, and a shared 12MB L3 cache. To

measure the e�ectiveness of our approach accurately, we disable

SMT (Simultaneous Multithreading), DVFS (Dynamic Voltage and

Frequency Scaling) and hardware prefetchers. Another Intel plat-

form is also discussed brie�y.

Benchmarks. The three matrix-based applications are selected

from Pluto [4] and Ca�e [23]: matmul (GEMM), tmm (triangular

matrix multiplication), and conv (a kernel used in a convolutional

layer of DNNs). For these applications, we have considered various

matrix sizes ranging from 2000 to 5000 and obtain similar results.

We report our results by choosing 3300 as a representative size.

For conv, we take the fourth convolutional layer from AlexNet [25]

as conv4. The number of images is 32, the number of input chan-

nels is 384, the number of �lters is 1024, the size of an input image

is 13 ∗ 13, and the size of the convolution kernel is 3 ∗ 3.

The co-runners for thesematrix computations are randomly gen-

erated workloads from SPEC CPU 2006 and STREAM [30], with

each workload containing up to 5 applications. In addition, we also

use a widely used distributedmemory caching system,memcached

[17], as a latency-sensitive co-running application.

Loop Tiling. For each matrix-based application, we apply two-

level loop tiling, with the inner tile size �xed as 56. We did not

use the default 32 from Pluto [4], because 56 leads to better perfor-

mance.

For static tiling, the outer tile size is set to 840 by hand-tuning.

The tiled code is generated by Pluto.

For peer-aware tiling, the outer tile size search space TS starts

from 280 and ends at 840 with a step of 56. Starting with 280, we

ensure that the working set still exceeds the private L2 cache so
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that the shared L3 cache is used. We will not look beyond 840 since

the optimal tile size in a co-location scenario should be smaller.

Finally, all programs are compiled by GCC -O3.

5.1 Optimizing Tiled Matrix Computations

We show that peer-aware tiling is more e�ective than static tiling

in optimizing the performance of a tiled matrix-based application.

We also analyze the accuracy of our peer-aware TSS model in al-

lowing optimal or near-optimal tile sizes to be selected.

5.1.1 Overall Performance. For each tiled matrix-based appli-

cation, we co-run it with 50 randomly generated workloads from

SPEC2006 and STREAM [30]. Figure 10 shows the overall perfor-

mance for GEMM. The horizontal axis represents the ID of a work-

load and the vertical axis the performance degradation when co-

located, which is computed by (Tco_run − Tsolo )/(Tsolo ), where

Tsolo (Tco_run ) is the execution time of GEMM in solo (co-run) ex-

ecution. There are three bars for each workload, with the leftmost

one for static tiling, the middle one for peer-aware tiling, and the

rightmost one for the oracle, i.e., optimal tiling. For static tiling, the

performance slowdowns range from 9.2% to 39.9% with an average

of 22.9%. For peer-aware tiling, the performance slowdowns range

from 8.1% to 23.5%with an average of 15.1%. Therefore, peer-aware

tiling is more e�ective than static tiling in reducing the average

co-location slowdown (i.e., interference) for GEMM by 34.1% (i.e.,

from 22.9% to 15.1%). Finally, peer-aware tiling is on par with ora-

cle tiling, for which the performance slowdowns range from 7.0%

to 23.5% with an average of 14.8%.

For peer-aware tiling, its performance gain comes from the re-

duced LLC misses, since our model can accurately predict the LLC

miss count of GEMM when co-running with di�erent workloads.

This allows us to select the tile size leading to the minimal cache

miss count by (13). Figure 11 shows the accuracy of our predic-

tion for 10 representative workloads (to save space) from Figure 10,

with an average error of 3.9% (across the 50 workloads).

Figure 12 (Figure 13) shows the overall performance and the pre-

diction accuracy for tmm (conv). We again plot the results for only

10 representative workloads to save space but use the results of

all the 50 workloads in computing the average performance. Com-

pared with static tiling, peer-aware tiling reduces the average co-

location performance slowdown for tmm by 40.3% (i.e., from 18.1%

to 10.8%) and for conv by 36.9% (i.e., from 17.9% to 11.3%). For both

applications, peer-aware tiling is on par with oracle tiling in terms

of the overall performance achieved. Finally, our model predicts

the LLC cache misses quite accurately, with an average error of

3.5% and 7.5% for tmm and conv, respectively.

5.1.2 Selected Optimal Tile Sizes. Figure 14 compares the pre-

dicted optimal tile sizes (represented by the thick blue lines) and

real optimal ones (represented by the orange triangles) for GEMM

when co-running with the same 50 workloads given in Figure 10.

For the 50 co-running workloads, the predicted tile sizes are close

to their corresponding real optimal ones: identical for 24 work-

loads, di�ering by 56 for 24 workloads, and di�ering by 112 for

2 workloads. Note that our outer tile size is an integral multiple

of the inner tile size, i.e., 56, implying that the predicted and real

optimal tile sizes di�er by at most two step sizes.

Similarly, the predicted and real optimal tile sizes are also close

for tmm and conv. For tmm, both are identical for 30 workloads, dif-

fer by 56 for 13 workloads, and di�er by 112 for 7 workloads. For

conv, both are identical for 26 workloads, di�er by 56 for 16 work-

loads, di�er by 112 for 7 workloads, and di�er by 168 for 1 work-

load.

5.2 Optimizing Co-located Applications

We show that peer-aware tiling is also more e�ective than static

tiling in optimizing the performance of the co-runners of a tiled

matrix-based application. Our co-runners are instances of mem-

cached [17], whose QoS is sensitive to cache contention [26]. To

avoid interference fromnetwork I/O and focus on cache contention,

memcached server and mutillate [26] load tester run on di�erent

sockets of a common node, which is similar to the case when both

run on di�erent nodes, simulating the common scenario in a data-

center. Speci�cally, we use one socket to run thememcached server,

another socket to generate the client loads for the server usingmu-

tilate and force them to only access socket-localmemory resources.

Two con�gurations are considered:

• Conf-1.On one socket, two cores are reserved for thememcached

server with two threads and the other four cores for running GEMM

(one instance per core). The mutilate load tester occupies all cores

on the other socket and generates 180k requests per second (RPS).

• Conf-2.On one socket, four cores are reserved for thememcached

server with four threads and the other two cores for running GEMM

(with one instance per core). The mutilate load tester occupies all

cores on the other socket and generates 360K requests per second.

5.2.1 Request Latency. For each con�guration, we compare solo-

run, peer-aware tiling, and static tiling in terms of the CDF (Cu-

mulative Distribution Function) for the request latency required

in each case. For solo-run, we start the memcached server to run

alone and send the requests from the client. For static tiling, we

co-locatememcached with GEMMwith its tile size found by static

tiling. For peer-aware tiling, we co-locate memcached also with

GEMM with its tile size found by peer-aware tiling.

Figure 15 shows the CDF of the request latency for memcached

underConf-1, with the three curves corresponding to solo-run, static

tiling and peer-aware tiling. For static tiling, the optimal tile size

found is 840. For peer-aware tiling, the optimal (nice) tile size found

for optimizing the performance ofmemcached is 280. For each curve,

the 95th percentile request latency is annotated with a dotted line.

Static tiling has increasedmemcached’s 95th percentile latency from

228µs to 292µs, causing a performance slowdown of 28.0% over

solo-run. In contrast, peer-aware tiling has increasedmemcached’s

95th percentile latency from 228µs to 271µs, representing a perfor-

mance slowdown of only 18.8% over solo-run. As a result, peer-

aware tiling is more e�ective than static tiling in reducing the co-

location performance slowdown, with a reduction factor of 32.9%.

Let us consider Conf-2. For static tiling, the optimal tile size re-

mains to be 840. For peer-aware tiling, the optimal tile size selected

is 504. Static tiling has increased memcached’s 95th percentile la-

tency from 720µs to 823µs (a slowdown of 14.3% over solo-run).

With peer-aware tiling, we have reduced the 95th percentile la-

tency to 770µs (a slowdown of 6.9% only over solo-run), and con-

sequently, the co-location interference by 51.7%.
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Figure 10: The overall performance of GEMM.

Figure 11: Predicted and real LLC misses for GEMM.

Figure 12: Performance and LLC misses for tmm.

Figure 13: Performance and LLC misses for conv.

Note that researchers have noticed that there exists variance

for memcached’s request latency [55]. Thus, each request latency

is the average of 200 runs.

5.2.2 SelectedNice Tile Sizes. When GEMMco-runs withmem-

cached, we select a so-called nice tile size forGEMM thatminimizes

miss_f eq(TA ) given in (14) in order to optimize the performance

of memcached. GEMM is said to be nice to memcached as GEMM

Figure 14: Predicted and real optimal tile sizes for GEMM

co-running with the 50 workloads in Figure 10.

Figure 15: The CDF of request latency for memcached.

does not snatch the the portion of the shared cache supposed to be

used by memcached.

For Conf-1, the cache pressure from memcached is p = 0.39. All

the tile sizes in our search space exhibit similar LLC cache miss

counts. However, the tile size 280 has the lowest LLC miss fre-

quency according to (14) and thus selected as the optimal (nice)

tile size.

For Conf-2, the cache pressure frommemcached is p = 0.73. The

tile size 504 has the lowest LLC miss frequency by (14) and thus

selected as the nice tile size.

5.3 Optimizing Library Routines

We show that peer-aware tiling is superior to static tiling in en-

abling library developers to optimize the performance of matrix-

based library routines. Our application is ATLAS [43], for which

two-level tiling is also applied. The inner tiling is 3-D (tiled for the

i, j and k loops with a tile size of 60 ∗ 60 ∗ 60) and the outer tiling

is 1-D (tiled for the k loop with a tile size of 480).
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Weco-runATLASwith 10 randomly generated workloads, again

from SPEC2006 and STREAM. Figure 16 compares the three ap-

proaches, identi�ed by ATLAS, static tiling, and peer-aware tiling

(all normalized to the performance of ATLAS in solo-run).

Figure 16: Performance of ATLAS, static tiling and peer-

aware tiling (normalized to ATLAS in its solo-run).

ATLAS represents the case when it runs in a co-location sce-

nario. For static tiling, we have applied 3-D outer tiling to ATLAS

and selected the (same �xed) optimal tile size 960∗960∗960 (for all

workloads) by hand-tuning. Static tiling outperformsATLAS in ev-

ery co-location scenario evaluated. For peer-aware tiling, the same

3-D outer tiling is applied except that the optimal tile sizes for dif-

ferent co-running workloads are selected at runtime by our peer-

aware TSS model for the purposes of optimizing the performance

of ATLAS. On average, peer-aware tiling outperforms ATLAS and

static tiling by 8.9% and 7.1%, respectively.

5.4 Accuracy of Peer-Aware TSS

We use GEMM to demonstrate the accuracy of our peer-aware TSS

model. We focus on optimizing the performance of GEMM. The

case for optimizing the performance of its co-runners is analyzed

similarly.

Figure 17 displays the curves of the predicted and real cache

miss counts under di�erent cache pressures for three tile sizes, 448,

616, and 840. We have omitted the other tile sizes in order to avoid

cluttering. A total of 50 STREAMINGworkloads are used. For each

tile size, the predicted curve is calculated by using (13) for each

workload while the real curve is generated by co-running GEMM

with with each workload. Both curves are close under di�erent

cache pressures.

One interesting observation is that GEMM’s optimal tile size is

a non-monotone function of the cache pressure exerted by its co-

runners. This is because the co-running cache behavior of GEMM

is the aggregation of the co-running cache behaviors of its reuse

patterns.

Consider Figure 17 again. Let p be the the cache pressure from

the co-runners of GEMM. If p < 0.01, the tile size 840 introduces

the minimal cache misses according to (13) and is thus optimal.

However, if p lies in [0.01, 0.1], the tile size 840 will introduce the

maximal cache misses, causing GEMM to exhibit the worst perfor-

mance. If p lies in [0.1, 0.22], the tile size 840 is neither the best nor

the worst. If p lies in [0.22, 0.53], the tile size 840 introduces the

minimal cache misses again according to (13) and is thus optimal.

Finally, if p > 0.53, the tile size 840 is the worst again.

Figure 17: Predicted and real LLC misses for 3 tile sizes.

5.5 Evaluation on a Second Platform

Wediscuss brie�y our evaluation on an Intel 2.00 GHzSandy Bridge-

based six-core Xeon E5-2620 with a private 32KB L1 D-cache, a pri-

vate 32KB L1 I-cache, a private 256KB L2 cache, and a shared 15MB

L3 cache.

We focus only on GEMM for this platform. Figure 18 (for Sandy

Bridge) is an analogue of Figure 10 (for Westmere). As the shared

L3 cache is larger this time, the performance slowdowns for all the

three approaches are smaller. However, peer-aware tiling, which

is on par with oracle tiling (“Optimal”), remains more e�ective

than static tiling in reducing the average performance slowdown

by 43.3% (i.e., from 12.0% to 6.8%).

Figure 19 is an analogue of Figure 11 for GEMM,with an average

error of 3.2% (across the 50 workloads).

6 RELATED WORK

There has been a lot of work on applying loop tiling to improve

locality and parallelism [3–5, 9, 31, 32, 44, 46–50]. Earlier, compiler

researchers rely on analytical models for tile size selection by char-

acterizing the performance of a tiled loop nest as a function of its

tile size.

Recently, model-driven empirical search methods are often used

for tile size selection. In [14, 43], empirical tile size selection is

applied to ATLAS, which generates multiple versions of the tiled

loop nest, runs them on the actual platforms, and automatically

selects the optimal tile size on the platforms [14, 43]. In [52], an-

alytical modeling and empirical searching are compared. and ob-

served that analytical model can achieve comparable performance

to that of code generated by empirical optimizers [52]. In [8, 53],

analytical models are used to prune the search space for empirical

optimization and guide their empirical tile size selection. Nowa-

days, some machine learning techniques are considered to select

tile sizes [28, 33, 54]. Moreover, pattern-based compilation meth-

ods [10–12] are also proposed to conduct semantic-speci�c opti-

mizations.

On multicore processors, researchers have studied the cache be-

havior of co-running applications and applied cache partitioning

to partition the shared cache among such co-runners. Chandra et

al. [6] investigate the impact of cache sharing on simultaneously

running threads. Mars et al. [29, 51] and Zhao et al. [56, 57] concen-

trate on quantitative analysis of performance interference incurred

by resource contention in memory subsystem. Stone et al. [38]

consider how to partition the shared cache among the competing

processes. Zhang et al. [27] propose a cache partitioning strategy
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Figure 18: The overall performance of GEMM on a Sandy Bridge-based platform.

Figure 19: Predicted and real LLC misses for GEMM on a

Sandy Bridge-based platform.

implemented in operation systems. Chang et al. [7] apply cooper-

ative cache partitioning to adapt multiple time-sharing partitions

among simultaneously running threads. Suh et al. [40] propose a

dynamic cache partitioning approach for any partition granularity.

Some researchers also estimate the e�ects of cache interference on

application performance at runtime [15, 16, 39, 45]. He et al. [21]

proposed an approach to estimating application slowdowns due

to contention between heterogeneous platforms, such as CPU and

GPU.

In recent years, parameterized loop tiling has also been used to

facilitate iterative compilation and auto-tuning. Renganarayanan

et al. [35] introduce a parameterized tiled loop generator for per-

fectly nested loops. Kim et al. [24] extends it to support multi-level

tiling. Hartono et al. introduce PrimeTile to generate parameter-

ized sequential tiled code for imperfectly nested loops [18] and

DynTile to generate parameterized tiled code for parallel execu-

tion [19]. Baskaran et al. [2] present PTile for wavefront parallel

tiled execution.

Nowadays, researchers have paid increasing attention to com-

pilation technologies in co-running environments, from two as-

pects: contentiousness and sensitivity. For contentiousness, Tang

et al. introduce a static transformation to throttle down the mem-

ory access rate of the contentious regions in low priority applica-

tions [41] and a static/dynamic compilation approach to adaptively

manipulating the contentiousness at runtime [42].

In the case of sensitivity, Bao and Ding [1] apply defensive tiling

to private caches, by performing tile size selection under a given

defensiveness, in order to obtain robust performance in co-running

environments. Jain et al. [22] propose a continuous shape shifting

framework, ShapeShifter, to reshape iteration spaces and pinpoint

near-optimal loop tiling con�gurations. Srinivas et al. [37] intro-

duce reactive loop tiling, which generates multiple tiled code ver-

sions with di�erent tile sizes for a given loop nest and dynamically

selects the best version at runtime. ShapeShifter and reactive loop

tiling are the closest related but orthogonal to our work. These

two earlier frameworks focus on code rewriting at runtime accord-

ing to the monitored co-runners. In contrast, our work focuses on

building a peer-aware TSS model analytically by taking a reuse-

pattern-centric approach. Furthermore, our model can be used to

guide compilers to optimize not only a tiled application but also its

co-runners and library developers to optimize the performance of

matrix-based library routines.

7 CONCLUSION

We have introduced a reuse-pattern-centric approach for quantify-

ing the co-running cache behavior of a matrix-based application,

allowing us to develop a peer-aware TSS model for the application

without the need to analyze its co-runners. Based on thismodel,we

have developed a peer-aware loop tiling approach that can guide

compilers to optimize the performance of a tiled matrix-based ap-

plication or its co-runners. In addition, peer-aware tiling also al-

lows library developers to optimize the performance of matrix-

based library routines.

This work has opened up a few opportunities for future research

on improving the performance of co-located applications in data-

centers. As one future work, we will apply our approach to large-

scale DNN applications, including training and inference. In ad-

dition, we will also study how to integrate a OS/hardware cache

partitioning mechanism with peer-aware tiling.
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